New vapes produce formaldehyde (what they use to preserve dead bodies), acetone (nail polish remover and paint thinner), acetaldehyde (a chemical in glue), and other carcinogens in their vape aerosol, which goes into your lungs. 1,2

Dangerous metal particles such as chromium are found in vape clouds and the toxic metal can build in your lungs over time.3,4

Newer vapes combine freebase nicotine with benzoic acid to create a stronger nicotine hit.1,5,6,7,11

Juul’s own patent states: “[N]icotine salt formulations provide satisfaction … comparable to smoking a traditional cigarette.”5

The nicotine you get in one vape pod can be as much as an entire pack of cigarettes.1,6,8,10,12

Vapes can emit as many as 31 different chemicals like formaldehyde.2

One 5% pod can have as much nicotine as an entire pack of cigarettes.1,6,8,10,12

One 3% vape pod contains 23mg of nicotine.6

One 5% vape pod contains about 40mg of nicotine.6

Heavy nicotine use can prime adolescent brains for future substance use.9

Studies have detected formaldehyde in vape aerosols operating at as low as 5W battery output.13,14

In a study using human embryonic kidney cells, researchers found that vanilla vape flavoring kicks off a process that can cause cell death and change how the cells in your body reproduce. 15

One study found that exposure to the following e-liquid flavors resulted in dramatic facial deformities in tadpoles: Strawberry, Almond, Caramel, Vanilla, Biscuit, and Vienna Cream; Cereal, Berries, Cream, and Citrus.16

Vanilla and Cinnamon flavors are a type of chemical called an aldehyde, they belong to the same chemical class as formaldehyde. 17

Diacetyl is a chemical that gives certain vape flavors their buttery flavoring, and is known to cause an irreversible, and chronic lung condition known as "popcorn lung" when inhaled at high doses.18,19

Nicotine is highly addictive, especially for adolescents, and has been found to affect adolescent brain development.20

Inhaling aerosols from vapes can cause arteries to narrow, increasing the risk for a heart attack21, 22, 23, 24

JUUL created marketing campaigns and programs specifically for teens, including going into classrooms and stating their products are safe when they really aren’t.25, 26

JUUL gave out free vapes at movie nights. 27

Vaping can decrease the lungs’ ability to fight off infections by disrupting the balance of protective layers of fat and immune cells, leaving you more vulnerable to infections like bronchitis and the flu, which can lead to pneumonia.28, 29, 30

Vaping is linked to a substantially increased risk of COVID-19 among teenagers and young adults, according to a new study led by researchers at the Stanford University School of Medicine31, 32

Even if you are strong, young, and healthy, the chemicals in vapes can weaken you and damage your lungs on a cellular level.33

The effects of vaping can start when you’re young. A study that collected data from over 6,000 high school students found that teens who currently vape were 48% more likely to have asthma compared to those who never vaped.34

E-cig vapor causes “mucociliary dysfunction,” which happens when human airway cells can’t clear out phlegm or mucus from our bodies effectively. The phlegm and mucus also gets stickier and thicker than normal. Many lung diseases, like asthma, emphysema and COPD are characterized by this condition.35


1 Bitzer, Z. T., Goel, R., Reilly, S. M., Elias, R. J., Silakov, A., Foulds, J., ... & Richie Jr, J. P. (2018). Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols. Free Radical Biology and Medicine, 120, 72-79.

2 Sleiman, M., Logue, J. M., Montesinos, V. N., Russell, M. L., Litter, M. I., Gundel, L. A., & Destaillats, H. (2016). Emissions from electronic cigarettes: key parameters affecting the release of harmful chemicals. Environmental science & technology, 50(17), 9644-9651.

3 Olmedo, P., Goessler, W., Tanda, S., Grau-Perez, M., Jarmul, S., Aherrera, A., ... & Rule, A. M. (2018). Metal concentrations in e-cigarette liquid and aerosol samples: the contribution of metallic coils. Environmental Health Perspectives (Online), 126(2).

4 Agency for Toxic Substances and Disease Registry (ATSDR). 2012. Toxicological Profile for Chromium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

5 Bowen et al. (2015). United States Patent No. US 9,215,895 B2. Retrieved from: https://patentimages.storage.googleapis.com/e2/9a/99/5a55ed883b0523/US9215895.pdf

6 JUULpod Basics. (2019). Retrieved January 31, 2019, from https://support.juul.com/home/learn/faqs/juulpod-basics

7 Pankow, J. F., Kim, K., McWhirter, K. J., Luo, W., Escobedo, J. O., Strongin, R. M., ... & Peyton, D. H. (2017). Benzene formation in electronic cigarettes. PloS one, 12(3), e0173055.

8 Federal Trade Commission. (2000). Tar, nicotine, and carbon monoxide of the smoke of 1294 varieties of domestic cigarettes for the year 1998. Washington DC: Federal Trade Commission.

9 US Department of Health and Human Services. (2016). E-cigarette use among youth and young adults. A report of the Surgeon General. Retrieved March, 1, 2018.

10 Jarvis, M. J., Boreham, R., Primatesta, P., Feyerabend, C., & Bryant, A. (2001). Nicotine yield from machine-smoked cigarettes and nicotine intakes in smokers: evidence from a representative population survey. Journal of the National Cancer Institute, 93(2), 134-138.

11 Jackler, R. K., & Ramamurthi, D. (2019). Nicotine arms race: JUUL and the high-nicotine product market. Tobacco control, tobaccocontrol-2018.

12 Goniewicz, M. L., Boykan, R., Messina, C. R., Eliscu, A., & Tolentino, J. (2018). High exposure to nicotine among adolescents who use Juul and other vape pod systems (‘pods’). Tobacco control, tobaccocontrol-2018.

13 Geiss, O., Bianchi, I., & Barrero-Moreno, J. (2016). Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours. International journal of hygiene and environmental health, 219(3), 268-277.

14 Gillman, I. G., Kistler, K. A., Stewart, E. W., & Paolantonio, A. R. (2016). Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in ecigarette aerosols. Regulatory Toxicology and Pharmacology, 75, 58-65.

15 Sassano, M. F., Davis, E. S., Keating, J. E., Zorn, B. T., Kochar, T. K., Wolfgang, M. C., ... & Tarran, R. (2018). Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLoS biology, 16(3), e2003904.

16 Vanilla and Cinnamon flavors are a type of chemical called an aldehyde, they belong to the same chemical class as formaldehyde.(17)+C17:C18

17 Fetterman, J. L., Weisbrod, R. M., Feng, B., Bastin, R., Tuttle, S. T., Holbrook, M., ... & Hamburg, N. M. (2018). Flavorings +C17:C18in tobacco products induce endothelial cell dysfunction. Arteriosclerosis, thrombosis, and vascular biology, 38(7), 1607-1615.

18 Allen, J. G., Flanigan, S. S., LeBlanc, M., Vallarino, J., MacNaughton, P., Stewart, J. H., & Christiani, D. C. (2015). Flavoring chemicals in e-cigarettes: diacetyl, 2, 3-pentanedione, and acetoin in a sample of 51 products, including fruit-, candy-, and cocktail-flavored e-cigarettes. Environmental health perspectives, 124(6), 733-739.

19 The National Institute for Occupational Safety and Health (NIOSH). 2017. Flavorings - Related Lung Disease. Atlanta, GA: Centers for Disease Control and Prevention. Retrieved 2/21/19, from: https://www.cdc.gov/niosh/topics/flavorings/exposure.html/

20 Goriounova, N. A., & Mansvelder, H. D. (2012). Short-and long-term consequences of nicotine exposure during adolescence for prefrontal cortex neuronal network function. Cold Spring Harbor perspectives in medicine, 2(12), a012120.

21 Alzahrani, T., Pena, I., Temesgen, N., & Glantz, S. A. (2018). Association between electronic cigarette use and myocardial infarction. American journal of preventive medicine, 55(4), 455-461.

22 Vindhyal, M. R., Ndunda, P., Munguti, C., Vindhyal, S., & Okut, H. (2019). Impact on cardiovascular outcomes among e-cigarette users: a review from National Health Interview Surveys. Journal of the American College of Cardiology, 73(9 Supplement 2), 11.

23 Carnevale, R., Sciarretta, S., Violi, F., Nocella, C., Loffredo, L., Perri, L., … Frati, G. (2016). Acute Impact of Tobacco vs Electronic Cigarette Smoking on Oxidative Stress and Vascular Function. Chest, 150(3), 606–612.

24 Caporale, A., Langham, M. C., Guo, W., Johncola, A., Chatterjee, S., & Wehrli, F. W. (2019). Acute Effects of Electronic Cigarette Aerosol Inhalation on Vascular Function Detected at Quantitative MRI. Radiology, (1), 97.

25 Kaplan, S. (2019, July 25). Juul Targeted Schools and Youth Camps, House Panel on Vaping Claims. The New York Times. https://www.nytimes.com/2019/07/25/health/juul-teens-vaping.html

26 Zeller, M. (2019). JUUL Labs, Inc., Request for Documents and Information-FDA.

27 Chaykowski, K. (2018, November 16). The Disturbing Focus Of Juul's Early Marketing Campaigns. Forbes. https://www.forbes.com/sites/kathleenchaykowski/2018/11/16/the-disturbing-focus-of-juuls-early-marketing-campaigns/#45436c0c14f9

28 Madison, M. C., Landers, C. T., Gu, B. H., Chang, C. Y., Tung, H. Y., You, R., ... & Putluri, N. (2020). Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. The Journal of clinical investigation, 129(10), 4290-4304.

29 Carroll, L. (2019, September 04). Vaping may disrupt immune cells in the lungs, mouse study finds. Retrieved September 08, 2020, from https://www.nbcnews.com/health/vaping/vaping-may-disrupt-immune-cells-lungs-mouse-study-finds-n1049661

30 Harrison, S. (2019, September 04). Vaping May Hamper the Lungs' Ability to Fend off Infections. Retrieved September 08, 2020, from https://www.wired.com/story/vaping-may-hamper-the-lungs-ability-to-fend-off-infections/

31 Gaiha, S. M., Cheng, J., & Halpern-Felsher, B. (2020). Association between youth smoking, electronic cigarette use, and Coronavirus Disease 2019. Journal of Adolescent Health.

32 Digitale, E. (2020, August 11). Vaping linked to COVID-19 risk in teens and young adults. Retrieved September 17, 2020, from https://med.stanford.edu/news/all-news/2020/08/vaping-linked-to-covid-19-risk-in-teens-and-young-adults.html

33 Dinkeloo, E., Grier, T. L., Brooks, R. D., & Jones, B. H. (2020). Vaping, Smoking, and the Physical Fitness of Active Young Men. American Journal of Preventive Medicine, 58(1), e31-e37.

34 Schweitzer, R. J., Wills, T. A., Tam, E., Pagano, I., & Choi, K. (2017). E-cigarette use and asthma in a multiethnic sample of adolescents. Preventive medicine, 105, 226-231.

35 Chung, S., Baumlin, N., Dennis, J. S., Moore, R., Salathe, S. F., Whitney, P. L., ... & Salathe, M. (2019). Electronic cigarette vapor with nicotine causes airway mucociliary dysfunction preferentially via TRPA1 receptors. American journal of respiratory and critical care medicine, 200(9), 1134-1145.